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ABSTRACT OF THE THESIS 

An Application of Adaptive Learning 

to Malfunction Recovery 

by 

Robert Edward Cruz 

Master of Science in Computer Science 

University of California, Los Angeles, 1985 

Professor Jacques J. Vidal, Chair 

A self-organizing controller is developed for a simplified two-dimensional 

aircraft model. The controller learns how to pilot the aircraft through a navi- 

gational mission without exceeding pre-established position and velocity lim- 

its. The controller pilots the aircraft by activating one of eight directional ac- 

tuators at all times. By continually monitoring the aircraft's position and 

velocity with respect to the mission, the controller progressively modifies its 

decision rules to improve the aircraft's performance. When the controller has 

learned how to pilot the aircraft, two actuators fail permanently. Despite this 

malfunction, the controller regains proficiency at its original task. The exper- 

imental results reported show the controller's capabilities for self-organizing 

control, learning, and malfunction recovery. 
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Introduction 

Objectives 

As aircraft technology advances in complexity, piloting an aircraft is 

becoming more difficult and subject to error. This difficulty can be critical 

during an in-flight malfunction, risking the loss of both the pilot and aircraft. 

In these situations, it is important to devise automated assistance for the pi- 

lot. With this goal in mind, UCLA and the NASA Dryden Flight Research 

Facility are developing expert systems for potential onboard use in future air- 

craft. The research presented in this thesis, while a long way from satisfying 

the goal, represents an initial step towards its achievement. 

The immediate objective of this study is to develop a controller that 

learns an aircraft task and recovers when the aircraft malfunctions. A com- 

puter piogram is used to simulate both the controller and the aircraft. Given 

limited a priori information and a trial-and-error learning strategy, the con- 

troller learns to navigate a two-dimensional aircraft through a pre-established 

mission. The controller uses performance feedback that is taken during and 

after each aircraft flight. Because its learning strategy is independent of 

flight dynamics, the model can be applied to both normal and abnormal flight 

situations. 

In essence, the controller decomposes the problem into mutually isolated 

subproblems corresponding to different regions of the aircraft's allowable state 
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space. For each subproblem, the controller implements the same problem- 

solving algorithm. The resulting solutions to each subproblem contribute to 

the accomplishment of the overall flight task. In this manner, the controller 

produces useful results for a problem involving a relatively large search space. 

Additionally, the decomposition technique lends itself to faster computation 

possibilities related to parallel processing implementations. 

Previous Work 

The research leading to the present work centers on controllers designed 

for the cart-pole system shown in Figure 1. 

Figure 1.  Cart-Pole System 

The system consists of a rigid pole mounted to the top of a motorized cart. 

The cart moves in two directions, left and right, along a st ight track of 

fixed length. The pole is hinged to the cart so that it rotates only in the vert- 

ical plane bounding the cart's motion.  The controller moves the cart by ap- 
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plying a constant-force motor either to the left or to the right. The cart-pole 

system b inherently unstable. Therefore, the controller's task is to keep the 

pole from falling by continually moving the cart left and right as appropriate. 

The cart-pole system was initially devised by Donaldson [4] in I960. In 

his work, Donaldson designs an automaton that learns the cart-pole balancing 

task by comparing its control movements to those of a human. This learning 

strategy, using the terminology of Carbonell, et. al. [3j is called "learning by 

example." The human assumes the role of a teacher who provides examples 

for the automaton to imitate. 

In 1964, Widrow and Smith [13] designed a controller that could be 

trained to effectively balance the pole. It consists of an encoder and an adap- 

tive linear element, or Adaline. The encoder generates patterns based on the 

values of four variables that describe the cart-pole system state: 

x : the position of the cart on the track, 

6 : the angle of the pole with the vertical, 

x : the velocity of the cart, and 

& : the angular velocity of the pole. 

The encoding scheme partitions each variable into discrete intervals. Conse- 

quently, each pattern represents a different combination of intervals occupied 

by the state values. 

The Adaline produces a weighted sum from the encoded patterns. If the 

sum is greater than or equal to a certain threshold value, the controller ap- 

plies the cart's motor to the right; otherwise, it applies the motor to the left. 

The controller learns to balance the pole by adjusting the Adaline's 

weights according to an observer's periodic assessment of the controller's per- 
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formance. When performance improves, it changes the weights to reinforce 

the Adaline's decision logic. Conversely, when performance degrades, it ad- 

justs the weights so that the decision logic is reversed. When the observer 

cannot distinguish a change in performance, the weights are left unchanged. 

Widrow and Smith refer to this learning technique as "selective bootstrap- 

ping." Though it does not learn by examples, it still requires a human ob- 

server to assess its performance. 

In 1968, Michie and Chambers [6], [7] presented an autonomous controller 

for the cart-pole problem. Its learning strategy, using Carboneil, et. al. [3] 

terminology again, is one of "learning from observation and discovery." Both 

the controller and the cart-pole system are simulated by a computer program 

called Boxes. The name derives from the method used to partition the cart- 

pole state space. In Michie and Chambers' representation, the state variables 

are plotted along four mutually orthogonal axes. Consequently, each system 

state corresponds to a unique point in the 4-dimcnsional state space. By us- 

ing Widrow and Smith's scheme of partitioning the state variables into inter- 

vals, the state space divides into discrete regions, or boxes. 

A "demon" resides in each box. Each demon decides the controller's out- 

put when the cart-pole state enters its box. By tabulating the consequences 

of their decisions, the demons learn the best controller output for each cart- 

pole state. Hence, the controller automatically assesses its performance and 

adjusts its decisions so that it eventually learns its task. 

In 1982, Barto, Sutton, and Anderson [2] presented a similar program for 

the cart-pole problem. Their aim was to show how the cart-pole controller 

could be built with neuron-like adaptive elements that they had developed. 

The controller consists of a single Associative Search Element (ASE) and a 
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single Adaptive Critic Element (ACE). Both elements rely on the state space 

representation used by Michie and Chambers. The ASE utilizes adaptive 

threshold logic to control the cart's movement. Its thresholds are modified 

according to reinforcement feedback provided by the ACE. The ACE pro- 

| duces the feedback by applying threshold logic to the consequences of each 

controller output.    Barto,   et.   al.   showed  that  their  controller performs 

significantly better than the one designed by Michie and Chambers. 

In 1966, Schaefer and Cannon [10] showed that the cart-pole problem gen- 

eralizes to an infinite sequence of problems of increasing difficulty, with 1, 2, 

3, etc., poles balanced each on top of the other. The controller to be 

described represents a different generalization of the problem. Whereas mo- 

tion in the cart-pole system is one-dimensional, it provides control for a two- 

dimensional system. Consequently, this research lays the groundwork for fu- 

ture work on automatic control in two- and three-dimensional systems. 

Outline of the Paper 

The organization of this paper has been divided into three major sections. 

In the first, the Boxes method is built into a controller for a two-dimensional 

aircraft model. The controller is exercised in three simulation experiments. 

In the first experiment, the controller is designed with a learning strategy 

similar to Michie and Chambers'. Afterward, the controller is enhanced with 

adaptive elements performing functions similar to the ASE and ACE designed 

by Barto. et at In the second section, two more experiments are conducted. 

T* •   t *tudy the controller's ability to pilot the aircraft after the 

»•• >*    The last section  is devoted to a discussion of the 
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controller's properties, as well as its performance limitations. 
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Experiments in Adaptive Control 

In the following experiments, a controller is developed for a simplified 

two-dimensional aircraft model. The aircraft's environment consists of pre- 

established boundaries on its flight position and velocity with respect to a 

two-dimensional Cartesian coordinate system (Figure 2). 

4 
X X 

4 

V 
Flight posltlor 1 

Y 
Plight »«locus 1 

Figure 2.  2-Dimensional Aircraft in a Position-Velocity World 

• 

The aircraft is equipped with force actuators that provide constant ac- 

celeration in eight directions with respect to the center of its vertical plane of 

motion: up, down, left, right, up-left, up-right, down-left, and down-right. 

These actuators correspond to the bi-directional motor used in the cart-pole 

problem. Therefore, the controller has been designed to activate only one ac- 

tuator at a time. The aircraft enters a failure state when it flies outside of its 

position boundaries or exceeds maximum speed limits.   These restrictions 

*-• v •.*".- > v v v 
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correspond to the cart running off an end of its track or the pole falling. A 

flight succeeds when the controller maintains flight within position and veloci- 

ty limits for a predetermined amount of time. 

The controller's design has been adapted from the Boxes system developed 

by Michie and Chambers {6], {7]. The exact details will be described in the 

following sections. 

Discretization of Aircraft States 

At any point in time, the current aircraft state is defined by four vari- 

ables: 

x : the aircraft's position on the X axis, 

y : the aircraft's position on the Y axis, 

x : the aircraft's velocity along the X axis, and 

y : the aircraft's velocity along the Y axis. 

These variables correspond to the variables x, 0, x, and B which defined the 

cart-pole system state. The variables are plotted along four mutually orthog- 

onal axes. This orientation defines a four-dimensional state space. Each air- 

craft state is represented by a point in this space. To differentiate between 

aircraft states, the four state variables are divided into value ranges creating 

discrete thresholds for the state values.  (Figure 3). 

The proper threshold values are dependent on performance characteristics 

of the model aircraft and its mission. For the next three experiments, the 

thresholds shown in Figure 3 have been selected. The variables x and y are 

partitioned into five allowable ranges by thresholds at 10, 30, and 50 meters 
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Figure 3. Range-Coded Aircraft State Variables 

in both the plus and minus directions with respect to the coordinate origin. 

Values for x or y of magnitude greater than 50 meters signal an aircraft 

failure. Similarly, the flight velocity variables x and y are divided into three 

distinct ranges by symmetric thresholds at 2 and 10 meters per second. 

Again, values for x and y of magnitude greater than 10 m/s constitute an air- 

craft failure. Thresholding the state variables thus "lumps together" closely- 

related aircraft states such that the four-dimensional state space within which 

the aircraft operates becomes subdivided into 5X5X3X3=225 distinct re- 

gions, or "boxes." Using the Boxes framework, the controller's task may be re- 

garded as maintaining the four state variables within their limits so that the 

current aircraft state falls within one of the 225 boxes at all times. 

Force Actuator Activation 

f. - 
I 

For simulation purposes, the aircraft's flight has been time-sliced into 1- 

second intervals. During each interval, the controller activates a force actua- 

tor.  For the experiments that follow, each actuator has been "designed" to 

0 
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provide 1.5 newtons of constant thrust in one of the eight directions. 

Depending on the direction in which it is applied, the activation of an actua- 

tor changes the aircraft's current position and velocity and, thus determines a 

new aircraft state. In this fashion, each actuator activation serves as a transi- 

tional operator that moves the aircraft from one box to another within its al- 

lowable state space. 

Problem Decomposition Using Demons 

To solve its problem, the controller must learn to avoid (sequences of) ac- 

tions that lead to an aircraft failure. Obviously, certain actions are appropri- 

ate in some instances and inappropriate in others. Because the controller 

does not have a built-in model of its environment, it must learn by trial and 

error the proper actuator(s) to activate in a given situation. 

Recall that partitioning the state variables has created a four-dimensional 

state space with 225 regions, or boxes. For illustrative purposes, imagine that 

these boxes are inhabited by "local demons"—one per box—all of which are 

under the supervision of a "global demon" (Figure 4). The global demon is in 

charge of the overall flight task. The local demons concern themselves only 

with aircraft flight when the aircraft state enters their box. Upon entry into 

a box, the local demon must decide which of the aircraft's eight actuators to 

activate next. After making its decision, the local demon informs the global 

demon who, in turn, activates the apprpriate actuator. After the actuator 

has been activated for a unit time-step, the global demon determines the new 

box within which the aircraft state now resides, and asks the corresponding 

local demon which force to activate next.  This sequence continues until the 
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Figure 4. Network of Demons for the Aircraft State Space 

aircraft enters a failure state, thus ending the trial run. 

The use of global and local demons exemplifies the problem-solving tech- 

nique of problem decomposition into subproblems. In order to solve the 

overall problem, the global demon divides it equally into 225 smaller ones and 

delegates their solutions to the local demons. Because each demon oversees a 

separate region of the aircraft state space, its job is to determine which force 

setting best avoids aircraft failure when the current state falls within its as- 

signed region. 

In order to carry out its task, each local demon records its previous ex- 

perience of the aircraft's flight by tabulating the following data: 
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Force Lifetimes: The total lifetime of decisions to activate a 
force actuator in a given direction. A force lifetime is the 
difference between the time of aircraft failure and the time when 
the aircraft state enters a box and the local demon decides to 
apply the force. A force's total Lifetime is a weighted sum of all 
of its "individual" lives during previous runs. 

Force Usages: Weighted sums, for each force direction, of the 
total number of times the local demon decided to activate a 
force during previous runs. 

Entry Times: The times during which the aircraft state en- 
tered the demon's box during the current run. Time is initial- 
ized to 1 at the beginning of a run, and continues in 1-second 
increments until aircraft failure. 

Experimental Procedures and Results 

Three experiments of 1000 simulated flights are conducted. Before the 

first run of each experiment, local force Lifetimes and Usages are initialized to 

zero. Additionally, control decisions for the local demons are determined at 

random. Each run begins at a randomly-generated initial point within the 

aircraft's allowable state space. The run terminates when the aircraft enters 

a failure state or avoids failure for 1200 time-steps. Thus, 1200 seconds, or 20 

simulated minutes, is established as the duration of a successful flight. 

The objective of the first experiment is to demonstrate that Michie and 

Chambers' Boxes method can be effectively utilized by a controller for a sim- 

ple aircraft. This objective assumes a close correspoDdance between the cart- 

pole problem and the current aircraft task. Hence, the procedures used in 

Experiment 1 are similar to those outlined by Michie and Chambers [6]. 
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Experiment 1 Procedures 

In this experiment, local demons are allowed to decide on only one force 

actuator to activate per run. Therefore, regardless of how many times the 

aircraft state enters a demon's box during a run, the demon's control decision 

remains the same. Initial states for each run consist of randomly-generated 

values for x and y between ±30m and values for x and y between ±2m/s. 

This initialization procedure restricts the initial aircraft state to nine local 

demon boxes located in the center portion of the aircraft state space. 

When the aircraft state enters a demon box during the first run, the fol- 

lowing actions occur: 

1. The local demon records the time of entry. 

2. The local demon signals the global demon to activate a force actuator. 
The local demon's decision depends on tabulated experience of the conse- 
quences of its previous decisions. However, during the first run, this decision 
is generated at random. 

As these actions continue, the aircraft state transitions from one demon box 

to another until it finally reaches a failure state. This event terminates a trial 

run and triggers the following actions: 

1. The global demon informs the local demons that an aircraft failure has 
occurred. 

2. Each local demon updates its eight pairs of force Lifetime and Usage 
totals. Based on these new totals, it determines which force actuator to ac- 
tivate (via the global demon) for the duration of the next trial run. 

If a force actuator was active before the aircraft failed, its Lifetime and Usage 

values are calculated as follows: 

N 
Lifetime = Lifetime' xDK + £trtj 

i-l 
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where N = the number of times that the aircraft state entered the demon 
box during the run that just failed, and 

tf and tj correspond, respectively, to the time of aircraft failure, and the indi- 
vidual times of entry into the demon box. 

usage = Usage'XDK + N 

where DK = 0.00 is a constant multiplier less than unity that weights recent 
experience relative to earlier experience. 

If a force actuator was inactive before the aircraft failure, its Lifetime and 

Usage values are reduced, respectively, according to the following equations: 

Lifetime = Lifetime'XDK, and 

Usage = Usage'XDK 

In order to determine which actuator to activate next, the local demons 

refer to a "target" value supplied by the global demon. This value represents 

the mean lifetime of the aircraft for all previous runs. It is calculated from 

the global demon's Lifetime (GL) and Usage (GU) values in the following 

manner: 

GL = GL'xDK+tf 

GU = GU'xDK+l 

«       #       GL 
target = — 

Using the global target value, the local demons assess the relative 

effectiveness, RE, of each of their eight force actuators. RE is calculated as 

follows: 

Rp _    Lifet ime+K X t arget 
Usage+K 
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where K = 20 is a multiplier weighting global relative to local experience. 

Incorporating K and the target into the assessment of a local force actuator 

serves to base the actuator's value on two levels of experience: global experi- 

ence from the aircraft's mean lifetime over K runs; and local experience from 

the actuator's Lifetime and Usage totals. 

Once the demon has calculated the relative value of each of its force ac- 

tuators, it chooses the actuator with the highest value as the one to activate 

during the next trial run (see footnote). 

Experiment 1 Results 

Because a pseudo-random number generator was used to generate initial 

aircraft states and decide the local demons' initial control decisions, Experi- 

ment 1 was conducted ten times, each time with a different initial seed value. 

The average results for the ten tests are plotted in Figure 5. The plot shows 

the average target value versus simulation run number measured after every 

50 runs. Notice the direct relationship between the controller's flight experi- 

ence and the aircraft's mean lifetime. An important statistic not portrayed is 

the number of successful flights per experiment. On the average, 41 flights 

out of a thousand were successful. 

The results of Experiment 1 demonstrate that the Boxes method may be 

used for the control of a simplified model aircraft. However, as evidenced by 

its low success rate, the controller's effectiveness is limited.  Because local de- 

Because of the way the experiment is initialized, strict adherence to this 
decision rule results in the local demon choosing its initial force actuator time 
after time. Therefore, the rule is followed only after a warm-up period during 
which each force actuator is randomly selected, or sampled, at least once. 
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Figure 5. Simulation Results for Experiment 1 

cision rules are updated only after each aircraft failure, the demons do not re- 

ceive feedback as to the immediate consequences of their decisions. Further- 

more, restricting the local demons to one force actuator activation per run 

reduces the controller's flexibility. 

The controller's performance can improve by removing these restrictions. 

The approach taken here will be described in the Experiment 2. It entails 

making design modifications to the present aircraft controller. The 

modifications involve the addition of two adaptive threshold-logic elements 
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similar in function to those proposed by Barto et. al. [2]. Consequently, the 

objective of the next experiment is to improve the controller's flight perfor- 

mance. 

Experiment 2 Procedures 

This experiment differs from the first one in three respects: 

1. An Adaptive Critic Element, or ACE, is incorporated into the controll- 
er. 

2. An Associative Search Element, or ASE, is incorporated into the con- 
troller. 

3. Local demons may activate more than one force actuator per run. 

Otherwise, the initialization procedures, discretization of aircraft states, and 

local control rules remain the same as those in Experiment 1. 

The purpose of the ACE and ASE is to facilitate local learning by con- 

stant reinforcement feedback. Recall that, in Experiment 1, local demons had 

to wait for a failure signal and target value from the global demon before they 

could update their force actuator values and make a nc w control decision. 

With the modified controller, the ASE updates force actuator values every 

time the aircraft state changes. 

Essentially, the function of the ACE is to compare the demon box occu- 

pied by the current aircraft state with the box occupied by the previous one, 

and report its findings to the ASE after each unit time-step. Demon box 

comparisons are based on the Lifetime totals for the force actuators activated 

by the "current" local demon and the "previous" one. The findings, f, assume 

the values of either plus or minus one. If the currently activated actuator has 

17 
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a Lifetime as good as, or greater, than that of the prevjjpprtr^Twposi^ 

if not, f is negative. ^ 

The function of the ASE is to modify local demon force Lifetimes in light 

of the findings supplied by the ACE.   Modification of a demon Lifetime as- 

sumes  two forms:    reinforcement  and  penalization.   Reinforcement  occurs 

when f is positive, while penalization corresponds to t being negative.   Be- 

cause of the manner in which the ACE calculates f, good local demon deci- 

„iUns will be reinVorce,& while pooT decisions will be penalized. Note that only 

..femons whose & tywtes have been  entered  during the current  run  become 

modified;  furth» "«more,  modification  only  applies  to the Lifetime  for  the 

demon's currently at iivatec* actuator. 

After each unit tim^steP> * local force Lifetime is modified according to 

the following equation: 

\ 
Lifetime = Lifetime'+?X ^XeXLifetime' 

where a = 0.05 = the minimui n percentage of a local Lifetime that may be 
reinforced/penalized, and 

e = an eligibility trace for local de mon modification. 

The eligibility trace measures the influence of a local demon's actions on 

reaching the current aircraft state. Obviously, the actions of recently-entered 

demons have more of an influence than those of distantly-entered ones. 

Thus, the former demons will have a higher eligibility trace than the latter 

ones. Eligibility begins at 100% when a demon box is first entered, and de- 

I creases exponentially in the following manner: 

c = e'X# 

where ß = 0.95 = the percentage of a demon's influence which remains after 
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each simulation time-step. 

Experiment 2 Results 

I 

I 

As with the first experiment, Experiment 2 was conducted ten times, each 

time with a different initial seed value. As depicted in Figure 6, the aircraft's 

mean lifetime was greatly improved by the addition of the ACE and ASE to 

the controller. In fact, successful flights occurred 537 times out of 1000, or 

for 53.7% of the trials. In several of the individual simulations, the mean sys- 

tem lifetime approached the upper time limit of 1200 unit time-steps. 

Because the controller's task remained the same from Experiment 1 to Ex- 

periment 2, the results of the latter experiment may be attributed to the 

modifications made to the controller. The controller can now make a different 

decision each time the aircraft state enters a local demon box during the same 

run. This capability enables the controller to recover more quickly from poor 

decisions. Additionally, the controller can receive immediate feedback con- 

cerning the consequences of local demon decisions. This feedback helps the 

controller to correlate aircraft performance to local demons' actions. 

The results of Experiment 2 show that the modified controller works well 

at the task to which it was originally assigned. What happens, though, when 

the controller is assigned a more difficult task? In the next experiment, the 

controller's task is made more difficult. The ensuing results should provide an 

idea of the relative tolerance of the controller to changes in task difficulty. 
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Figure 6.  Simulation Results for Experiment 2 

Experiment 3 Procedures 

This experiment studies the effect on aircraft performance of starting each 

run from anywhere in the aircraft state space. Therefore, x and y values are 

randomly selected between ±50m, while the x and y values are selected from 

the ±10m/s range. In experiments 1 and 2, initial states fell within only nine 

possible demon boxes corresponding to the central portion of the state space. 

In this experiment, all 225 boxes become eligible starting points for a trial 
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run. The change in initialization procedures increases problem difficulty by 

forcing the controller to map control actions to the entire aircraft state space. 

Other than this difference, all operating procedures are the same as those 

used in Experiment 2. 

Experiment 3 Results 

Experiment 3 was conducted with the same initial seed values used in Ex- 

periments 1 and 2. The average results are shown in Figure 7. Notice that 

aircraft performance is reduced by the addition of 216 more initial states. 

Also, the average success rate fell to 11.7%. These results show that the con- 

troller learns quicker when its starting conditions are more consistent. Other- 

wise, to attain the same performance reached in Experiment 2, a longer learn- 

ing period, i.e. more trial runs, are required. This conjecture was not tested. 

Comparison of Experimental Results 

For comparison purposes, the average results of all three experiments have 

been superimposed onto the same graph in Figure 8. With respect to the 

learning curve for Experiment 1, aircraft performance levels out after the first 

500 runs. Consequently, the experience gained from the last 500 runs is not 

utilized. The primary reason for this inefficiency concerns the (long) time in- 

tervals between modifications to local demon decision rules. In Experiment 2, 

local control rules are modified after every unit time-step. The effects on air- 

craft performance are evident upon inspection of the experimental results. 

However, in Experiment 3, aircraft performance degrades.  This result is a na- 
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Figure 7.  Simulation Results for Experiment 3 

tural consequence of the addition of 216 more starting states. 

Summary 

A controller has been developed for the adaptive control of a simplified 

model aircraft. Its components include: 

1.   A global demon that monitors the aircraft state, issues appropriate 
messages, and activates the aircraft force actuators. 
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Figure 8.  Simulation Results for Experiments 1-3 

2. A network of local demons corresponding to different regions of the 
aircraft state space that advise the global demon of the appropriate actuator 
to activate when the aircraft state enters a given box. The local demons ta- 
bulate data relating to the consequences of their previous control decisions. 
This data is used to make future control decisions that are implemented by 
the global demon. 

3. Two adaptive threshold-logic elements, the ACE and ASE, that modify 
local demon control rules in light of immediate aircraft feedback. 

Because the controller learns its task from trial-and-error experience, 

changes in the structure of its components can be made to provide for the 
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control of a more specialized flight task.  Such an undertaking is described in 

the sequel. 
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Experiments in Malfunction Recovery 

The purpose of the preceding experiments was to adapt the Boxes system 

to a simple flight controller. In achieving this purpose, the experiments pro- 

vide background for the experiments that follow. Their purpose is to apply 

the controller to a specific navigational problem, and study its performance 

under a simulated aircraft malfunction. In the current context, a malfunction 

exists when the aircraft loses operational control of one or more of its eight 

force actuators. An important assumption is that, despite the malfunction, 

the aircraft maintains sufficient directional control to accomplish its pre- 

defined mission. 

Experiment 4 Problem Description 

This experiment proceeds in two phases. In Phase One, the controller 

learns to pilot the aircraft from one demon box to another. When it achieves 

proficiency at this task, Phase One ends and Phase Two begins. At this 

point, an aircraft malfunction is simulated by removing two of the aircraft's 

eight force actuators. During the second phase, the controller learns to ac- 

complish its original task despite the loss of the actuators. 
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At the beginning of each run, the aircraft's position and velocity vectors 

are initialized as follows: 

x : -25m 

y :  25m 

x :   Om/s 

y :   Om/s 

Using the above values for the aircraft state variables, the aircraft's initial 

configuration is represented in Figure 9. 

» 

X X 

V 
Plight posttlor i 

Y 
Flight vtloclty 

Figure 9.  Initial Aircraft State for Experiment 4 

From this initial state, the controller must learn to pilot the aircraft to 

the center box of the disretized state space. This box corresponds to x and y 

falling within the 0 ±10m range, and x and y having values between 0 ±2m/s. 

With respect to the left half of Figure 9, the aircraft must fly from an initial 

position in the lower-left region of its "airspace" to the center region. As in 

the preceeding experiments, an aircraft failure occurs when the aircraft 

exceeds its position and velocity boundaries. Thus, a trial run ends when the 

aircraft reaches either the goal state or a failure state.   Trials continue until 
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the aircraft reaches the goal state 00% of the time. At this point, the aircraft 

loses operational of two of its eight force actuators. The controller must then 

recover from this malfunction by learning to complete the aircraft's mission 

using only six actuators. 

Experiment 4 Procedures 

Recall that in the preceeding experiments, the aircraft's mission was to 

prolong flight. Now, its mission is to fly from one demon box to another. Be- 

cause the mission has changed, the local demons' mutual goal of maximizing 

their expected lifetimes no longer applies. Instead, the local demons must 

minimize the aircraft's expected "distance" to the goal. To fulfill this task, lo- 

cal demons tabulate the following data: 

Force Distances: Relative approximations, for each force actuator, of the 
aircraft's distance to the coordinate origin. 

Force Usages: Sums, for each force actuator, of the number of times that 
the local demon decided to activate each actuator during previous trial runs. 

To increase the granularity of the state space, thresholds have been added 

at ±6m/s for the aircraft state variables x and y. The resultant value ranges 

for the discretized aircraft state space are shown in Figure 10. Consequently, 

the aircraft state space divides into 5x5X5x5=625 demon boxes instead of 

the previous 225. 

The preceeding discussion outlined two necessary design modifications to 

the controller. First, the information processed by the local demons has 

changed. Second, the number of local demons has increased. Now, the se- 

quence of events occurring in a trial run will be explained. 
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Figure 10.  Range-Coded State Variables for Experiments 4 and 5 

During each unit time-step, the following actions occur: 

1. The global demon signals the local demon whose box has just been en- 
tered by the current aircraft state. 

2. If the box has never been entered during a trial run, the demon's eight 
force Distances are initialized with the Pythagorean distance between the 
current aircraft position and the coordinate origin. 

3. The local demon decides on a force actuator for the global demon to 
activate. The demon makes this decision at random until each of the force 
actuators has been sampled at least once. Afterward, the demon decides on 
the force actuator with the lowest Distance:Usage ratio. When the demon has 
made its decision, it increments its appropriate Force Usage entry by one, and 
informs the global demon of its decision. 

4. The global demon activates the appropriate actuator, which causes the 
aircraft state variables to change. 

5. The ACE compares the current aircraft state with the previous one 
and reports its findings, f, to the ASE. To make the comparison, the ACE 
calculates the Pythagorean distance between the current aircraft position to 
the coordinate origin. If the current distance is less than the previous one, it 
sets f to 1; otherwise, it sets f to -1. 

6. The ASE modifies the appropriate force Distance value for each local 
demon whose box has been entered during the current run. It modifies Dis- 
tance values as follows: 

Distance = Distance' + aX? XeX Distance' 

where a = 0.1 and 
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e = e'X/? 

where ß = 0.8 (see footnote). 

After the ASE modifies the local force Distance entries, the simulated time 

is incremented a unit step, and steps 1-6 are repeated. This cycle continues 

until the aircraft reaches either a success or a failure state. Upon success, the 

ACE issues an f value of 1. With f, the ASE modifies eligible force Distance 

values as in step 6 above, except that it uses 0.5 as its value for alpha. Upon 

failure, f = 1, and the ASE modifies local force Distances using an a value of 

3. Consequently, local control decisions are either significantly reinforced (de- 

creased) or penalized (increased) to reflect the end result of the trial run. 

Afterward, the controller re-initializes the aircraft state variables, and a new 

trial run begins. The experiment proceeds in 50-run increments. When at 

least 45 out of 50 flights are successful, Phase One ends. 

Phase Two begins with the aircraft losing control of its up-right and 

down-left force actuators. Despite this malfunction, the controller must re- 

gain its 90% proficiency rate for the original aircraft mission. Its control deci- 

sions for the six remaining actuators are influenced by the local force Distance 

and Usage totals gained from Phase One. 

Because of the selection of initial and goal aircraft states, the malfunction 

prevents the aircraft from flying directly toward its positional goal. Instead, 

it must combine its up and right actuators to compensate for the loss of the 

up-right one. Similarly, it must combine the down and left actuators to com- 

pensate for the loss of the down-left one.   When the aircraft again flies suc- 

^w^!l •w . •- • ^ 

For a further explanation  on  the meaning of a,  f,  and  e,  refer  to the 
preceding subsection entitled "Experiment 2 Procedures." 
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cessful missions 45 times out of 50, Phase Two and the experiment end. 

Experiment 4 Results 

Experiment 4 was conducted ten times, each time with a different initial 

seed value. The final results are listed in Figure 11. Notice first that, regard- 

less of the initial seed value, each test achieves the 00% task proficiency rate 

in both phases of the experiment. This result demonstrates the controller's 

capability to learn a navigational task under both normal and malfunction 

conditions. However, the required learning time for each phase does not vary. 

This result was not expected. 

Total trial» nacaaaary 
Initial to raacn 962 proftclancy 

at alngla navigational 
S»$Ö task. 

Vat IM Ptiaaa    Ntaaa 
Ona      TMO 

e IBS       169 
l iee     lee 
2 180       IBS 
3 loo     iee 
A iee    iee 
5 iee     iee 
6 iee     iee 
7 iee    iee 
e iss     iee 
9 iee    iee 

Figure 11. Simulation Results for Experiment 4 

Initially, Phase One was expected to take longer to complete than Phase 

Two. Whereas the controller begins Phase One with no experience of the 

consequences of its decisions, it begins Phase Two with the Distance and 

Usage totals gained from the previous phase. Therefore, its initial decisions in 

.•-...!*./_*_•#..•.,....... „•. V .v.'- 
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Phase Two should be more accurate than the random decisions made at the 

beginning of Phase One. This initial accuracy was expected to reduce the re- 

quired learning time in Phase Two. 

Two factors contributed to the experimental results. First, the experi- 

ment was divided into 50-run increments. At the end of each increment, the 

number of successful missions was evaluated. If there were at least 45, the 

appropriate phase would terminate. In these terms, the average time required 

to complete each phase was two. Perhaps, given a more difficult task (i.e. one 

that takes longer to complete), the flight experience gained in Phase One 

would have been reflected in a shorter learning time for Phase Two. 

The second factor concerns the particular actuators that malfunctioned. 

During Phase One, the controller learned that the up-right actuator moved 

the aircraft closest to the goal from its initial position. However, this actua- 

tor was inoperational during Phase Two. Consequently, the controller's "best 

choice" in the first phase was no longer an alternative in the second. This 

condition prevented the controller from effectively utilizing its experience 

gained in Phase One. 

To test the validity of these ideas, Experiment 5 was devised. Its aim is 

to study the effects of task difficulty and actuator malfunction on required 

learning time. Thus, the final results should show more clearly the temporal 

relationship between Phases One and Two. 

Experiment 5 Procedures 

In this experiment, the controller again learns to pilot the aircraft to the 

center box of the state space.   However, its initial position and velocity no 
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longer remain constant. At the beginning of each trial run, values for the 

state variables x and y are randomly generated in the [-30,-10] and [10,30] 

ranges while x and y values are generated in the [-2,2] range. Consequently, 

the initial aircraft state falls within one of four local demon boxes surround- 

ing the central region of the aircraft state space. 

The random initialization procedures are designed for two purposes: (1) to 

increase the difficulty of the controller's task, and; (2) to increase the accura- 

cy of the controller's initial Phase Two decisions. To clarify this last point, 

realize that only the up-right and down-left actuators malfunction. Thus, in 

Phase Two, whenever the aircraft begins in the upper-left and lower-right re- 

gions of its airspace, its best decision alternatives—down-right and up-left, 

respectively—still remain. Thus, half of the controller's Phase Two decisions 

maximize Phase One experience. 

Other than the addition of random initial states, the experimental pro- 

cedures remain the same as those employed in Experiment 4. 

Experiment 5 Results 

As usual, Experiment 5 was conducted ten times. The results are shown 

in Figure 12. 

Due to the random initialization procedures, these results vary more than 

those of Experiment 4. In Phase One, the number of runs required for com- 

pletion ranges from 250 to 750. In Phase Two, only 150 to 350 runs are need- 

ed. These results show that the controller requires more trials to complete 

Phase One than to complete Phase Two. Thus, for the task under study, the 

controller's required learning time depends on its prior task experience. 
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Total trial* nacastary 
Initial to raach 90Z proficiency 

at randoa navigational 
SMd taak. 

value Phase     Phaaa 
Ona      Tao 

e 256      156 
1 460       158 
2 659       200 
3 750       200 
4 400       150 
5 250       350 
S 350       300 
7 350       250 
• 300       300 
9 250       350 

Figure 12.  Simulation Results for Experiment 5 

Summary 

To accommodate the aircraft's navigational mission, slight modifications 

were made in the controller's original design. The number of local demons 

was increased from 225 to 625. In addition, the demons' goal of maximizing 

force lifetimes was changed to minimizing force distances. Finally, a special- 

ized reinforcement strategy was added to conclude each trial run. Despite 

these changes, the current controller still possesses the basic components that 

comprised the original design. Thus, the controller design offers flexibility in 

its application to simple aircraft tasks. 

More important, the results of the two experiments demonstrate the 

controller's malfunction recovery capabilities. Although only one particular 

malfunction was studied, the controller's usefulness extends to others. Furth- 

ermore, the aircraft malfunction may occur at any instant instead of "wait- 

ing" for the controller to achieve task proficiency.  This property stems from 
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the fact that the malfunction conditions are transparent to the controller.  It 

is important because real-life malfunctions occur unexpectedly. 

-   -   -   •" J--   -   -ft Ai£jJmjL^m-L- 
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The Controller in Perspective 

The preceeding experiments describe the development of a controller to 

pilot a two-dimensional model aircraft. Now let us reflect on what the exer- 

cise has accomplished. Most significantly, it has provided a general frame- 

work for adaptive control that addresses the issue of malfunction recovery. 

Additionally, it demonstrates the controller's flexibility by applying it to two 

aircraft tasks. Finally, it provides an idea of the controller's tolerance to 

different initial conditions. 

Though its effectiveness has only been studied with respect to a simplified 

aircraft model, this fact is of secondary importance (see footnote). Instead, 

the controller's primary importance derives from its capability to recover from 

malfunctions. 

With these ideas in mind, let us examine the controller from a general per- 

spective. 

With the appropriate flight dynamics equations, and control actions 
corresponding to the actual deflections of an aircraft's control surfaces, the 
controller can be modified to pilot more advanced aircraft systems. The 
modification would entail changes in the problem space definition and local 
decision rules. However, the model's basic components and problem-solving 
strategy would remain unchanged. 
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Classical Control Systems 

Although it features certain properties characteristic of a classical con- 

troller, the proposed controller is fundamentally different from a classical one. 

As with a classical controller, the proposed controller periodically outputs an 

actuating signal to the plant, or process, that it controls. However, in a clas- 

sical controller, the actuating signals are pre-designed to correspond to 

different input states. In this sense, the classical controller "knows" a priori, 

the operating dynamics of the controlled process. In the proposed controller, 

the operating dynamics of the aircraft and its mission are not known before- 

hand. Instead, the controller must learn, by trial and error after the process 

begins, the correct actuating signals to issue for each aircraft state. 

Another major difference involves the implementation of process feedback. 

In classical control systems, feedback takes on the form of an "error 

difference" between the plant's desired and actual performance. The controll- 

er uses this difference to adjust its output so that the error is reduced in sub- 

sequent plant execution. In the proposed control system, feedback has two 

forms, both of which differ from conventional methods. In the first form, 

feedback occurs only when the aircraft enters a success or failure state. This 

feedback signals the end of a trial run. Depending on the event (success or 

failure) that terminates the run, the controller adjusts its local decision rules. 

In the second form, feedback from the ACE "predicts" the aircraft's future 

performance based on a comparison between the current and previous aircraft 

states. The ASE uses this prediction to adjust the controller's logic for deci- 

sions leading to the current aircraft state. Consequently, this feedback 

influences the process only when a previous input pattern repeats itself. 

Thus, in one instance, feedback occurs infrequently and, in the other, its 
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consequences do not occur immediately. 

i The primary reason for the controller's deviation from classical control 

theory   arises  from  the  objectives  for  its  ultimate  use.    When   initially 
: 

configured, the controller can theoretically be provided with the exact operat- 

| ing dynamics of its plant.  However, upon the occurrence of a plant malfunc- 

y tion,   the   plant's   operating   dynamics   will   change.    Consequently,   the 

controller's decision logic will no longer remain accurate.  As such, the con- 

| trollet process will fail unless the controller is designed to anticipate the par- 

ticular malfunction conditions.   Unfortunately, because of the unpredictable 

'''. nature of most malfunctions, this capability is neither feasible nor practical. 

• In this respect, a controller designed in the classical manner will not suffice. 

p Instead, it is more desirable to design a controller capable of adapting to the 

E conditions prevalent for its current plant configuration. 

Adaptive Control 

Depending on its context in this paper, the term "adaptive control" can 

take on two potentially confusing meanings. First, it can describe the process 

by which the controller learns to pilot the aircraft through its mission. Alter- 

natively, it can describe the way the controller recovers the aircraft from a 

malfunction so that the aircraft can continue its mission. Both processes are 

related in the sense that the same control task must be accomplished though 

the plant configuration may vary. For this reason, subsequent references to 

adaptive control will convey its former, more common, meaning. As a final 

note, realize that the controller's malfunction recovery capabilites derive 

directly from the adaptive control method that it employs. 
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In general, as Truxal [11] explains, 

the primary interest in adaptive control lies in the possibilities 
of an automatic measurement of process dynamics and of an au- 
tomatic and frequent redesign of controller characteristics. 

These activities are present in the proposed controller. Until pre-established 

termination conditions are met, the controller continually measures the 

aircraft's position and velocity vectors. It uses these measurements to pro- 

gressively modify its local decision rules with respect to an overall perfor- 

mance criterion. As a result, the controller is able to adapt to the aircraft's 

operating conditions in a manner that enables the aircraft's performance to 

improve. 

Learning Systems 

Because of its adaptive nature, the controller's task is not merely one of 

control itself; it is one of learning to control. Thus, to completely analyze 

the controller, one must consider its capacity for learning. Learning occurs by 

continually observing and tabulating the aircraft's performance. From these 

specific observations, the controller induces general conclusions as to the 

proper responses for different classes of input states. The learning process is 

then reflected in the manner in which the aircraft's measured performance 

improves with time. 

As a machine learning paradigm, the controller exemplifies what Carbonell 

et. al. [3] call "learning from observation and discovery." However, a more 

precise classification comes from noting the functions of the ACE and ASE. 
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These adaptive logic elements in tandem provide what Widrow et. at. [12] 

call "learning with a critic." In this process, the controller learns its task via 

qualitative comparisons resulting from the application of an overall perfor- 

mance criterion to the outcome of its decisions. 

Self-Organization 

Implicitly related to the controller's adaptive control and learning capabil- 

ities is a desirable property known as "self-organization." Because the 

controller's design assumes no a priori knowledge of the aircraft's flight 

dynamics, the controller must learn its input-output decision logic from trial- 

and-error experience. As it accumulates flight dynamics information, the con- 

troller associates correct responses for each input state such that a map is 

created for the previously unknown problem space. Because the map is creat- 

ed a posteriori, the process of learning to pilot the aircraft is said to self- 

organize. For clarification purposes, Saridis [8] offers two definitions: 

Self-Organizing Control Process: A control process is called 
"self-organizing" if reduction of the a priori uncertainties per- 
taining to the effective control of the process is accomplished 
through information accrued from subsequent observations of 
the accessible inputs and outputs as the control process evolves. 

Self-Organizing Controller: A controller designed for a self- 
organizing control process will be called "self-organizing" if it ac- 
complishes on-line reduction of the a priori uncertainties per- 
taining to the effective control of the process as it evolves. 

A self-organizing controller is necessary as long as the actions governing 

the effective control of the given process are not provided from the outset. In 
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the present context, this restriction arises because of the controller's intended 

use for aircraft malfunction recovery. Because of the unpredictable nature of 

malfunction situations, the particular conditions prevalent in a malfunction 

are difficult to anticipate. Therefore, it is desirable that the controller learn 

the particular conditions that apply to a given situation. As an added 

benefit, the controller can use experience gained in previous situations to ac- 

celerate its recovery time. In essence, self-organization renders the plant's 

operating conditions transparent to the controller. 

Malfunction Recovery 

The main result of this research has been the development of a controller 

that can recover in the event of a plant malfunction. This capability was 

demonstrated by the controller's performance in Experiments 4 and 5. As 

mentioned earlier, the controller's effectiveness generalizes to other malfunc- 

tions providing that the aircraft maintains enough directional control to fly 

its mission. For these reasons, the controller may be classified as a malfunc- 

tion recovery system. 

This classification does not give the controller any properties that have 

not already been discussed. Instead, it uniquely differentiates this controller 

from all others previously presented in the literature. Whereas other controll- 

ers have been designed with adaptive, learning, and self-organizing capabili- 

ties, their application has heretofore been limited to processes running under 

normal operating conditions.   The present controller removes this restriction 

by operating effectively even after a plant malfunction. Because controlled 

processes are rarely immune to failure, controllers can c 
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incorporation of this capability. 

Limitations of the Proposed Controller 

A characteristic feature of self-organization involves the controller learn- 

ing its task as the controlled process evolves. Because of this requirement, the 

controller's performance is highly dependent on the specificity of its feedback 

and the heuristics used to induce its control rules. Similarly, performance will 

vary depending on the selection of an appropriate state space. In light of 

these observations, the results reported here have not been optimal. Instead, 

they show that the controller can yield useful performance when applied to a 

non-trivial task. 

As a malfunction recovery system, the controller requires that a solution 

exists for each malfunction situation. In this regard, its use is limited to con- 

trolled processes that exhibit "redundancy of control." When a unit fails, the 

controller withstands the failure by effecting compensating control actions 

from units still remaining operational. However, because of the redundancy 

of control requirement, more than one solution may exist for a given control 

task. Consequently, the controller may not always discover the "best" solu- 

tion. 
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Conclusion 

The research presented in this thesis shows how adaptive logic can be 

used to control a continuous process. In addition, it shows how a self- 

organizing controller can learn its task on-line. Self-organized learning is use- 

ful when only limited information is available a priori, as in the case of pro- 

cess malfunctions. 

In conclusion, this thesis proposes a controller with two significant capa- 

bilities: (1) it can learn its task on-line; and (2) it can recover control even 

after a process malfunction. The first capability is not new; it can be found 

in controllers developed elsewhere in the literature. However, nowhere in the 

literature has a self-organizing controller been developed that addresses the 

issue of malfunction recovery. Herein lies the contribution of this work. 

42 

£&£&tä&£^^ ••-••••••   ••..•>•_. v ..- __j 



*-'~ 

References 

[1] Andrew, A.M.  "Prerequisites of Self-Organization," in Com- 
puter and Information Sciences, J.T. Tou and R.H. Wilcox, 
Eds. (London: Cleaver-Hume Press, 1964) pp.381-91. 

[2] Barto, A.G., R.S Sutton, and C.W. Anderson. "Neuron-Like 
Adaptive Elements That Can Solve Difficult Learning Con- 
trol Problems," Coins Technical Report 82-20 (Amherst: 
University of Massachusetts Press) pp. 1-53. 

[3] Carbonell, J.G., R.S. Michalski, and T. M. Mitchell.   "An 
Overview of Machine Learning," in Machine Learning: An 
Artificial Intelligence Approach, Michalski, Carbonell, and 
Mitchell, Eds. (Palo Alto: Tioga Publishing Co., 1983) pp. 
3-23. 

[4] Donaldson, P.E.K.  "Error Decorrelation: a Technique for 
Matching a Class of Functions," in Proceedings of the Third 
International Conference on Medical Electronics, (1960) pp. 
173-78. 

[5] Fu, K.S. "Learning Control Systems—Review and Outlook," 
IEEE Transactions on Automatic Controls, AC-15 (2), 
(1970) pp. 210-21. 

[61 Michie, D., and R.A. Chambers. "BOXES:  An Experiment 
in Adaptive Control," in Machine Intelligence 2, E. Dale and 
D. Michie, Eds. (Edinburgh: Oliver and Boyd, 1968) pp. 
137-52. 

[7] Michie, D., and R.A. Chambers. "'BOXES' as a Model of 
Pattern-Formation," in Towards a Theoretical Biology; 1, 
Prolegomena, C.H. Waddington, Ed. (Edinburgh: Edin- 
burgh University Press, 1968) pp. 206-15. 

[8] Saridis, G.N. Self-Organizing Control of Stochastic Systems 
(New York: Marcel Dekker, Inc., 1977). 

43 

." .- .- • • •-• j" .• * • • • • •.•••••••.- ••• •.- -.•1- ^- •-• o.^- .-• 
4 

.fi-y •-•'«-•*••-•'•--*.•••. '-•. ••.•:>;•.'••.'•':••.•• -:-*.''-J'vJ!-r.-'^::-l:.'v^<j^. v.-y^-.vl', .•.•:r.\-.v:^:.''jlv>^V.-] 



. * m m 

M 

[101 

("I 

[12] 

[13] 

Savant,   C.J.,    Jr. 
(McGraw-Hill, 1968). 

Control   System   Design,    2nd   Ed. 

Schaefer, J.F., and Cannon, R.H., Jr. "On the Control of 
Unstable Mechanical Systems," in Proceedings of the Inter- 
national Federation on Automatic Control 1966, paper 6C. 

Truxal, J.G. The Concept of Adaptive Control," in Adap- 
tive Control Systems, E. Mishkin and L. Braun, Jr., Eds. 
(McGraw-Hill, 1961) pp. 1-19. 

Widrow, B., N.K. Gupta, and S. Maitra "Punish/Reward: 
Learning with a Critic in Adaptive Threshold Systems," in 
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 
SMC-3, No. 5, (Sept 1973) pp. 455-65. 

Widrow, B., and F.W. Smith "Pattern-Recognizing Control 
Systems," in Computer and Information Sciences, J.T. Tou 
and R.H. Wilcox, Eds. (London: Cleaver-Hume Press, 
1964) pp. 288-317. 

44 

•   •   .   »   •   -   » - • -v.'» »'• •"» «."•»** .V\"» <""V*.%-1 



I • ii i UM • «• . • j tymümyywum^^jm^m^.w-^s^yr^f^^w^n J_r.. ••._». f.» .-,*-.. : r ..,,..,..- ^ ... ,-. ^ ^.- -7T-.-> . ,-, .-.. .-. w-.*-• 

END 

FILMED 

10-85 

DTIC 
.'     ."   •*•    S    ." 


